- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
Climate Change Linked to Rising Arsenic in Rice, Increasing Health Risks: Lancet Study - Video
|
Overview
Climate change may significantly impact arsenic levels in paddy rice, a staple food for millions across Asia, reveals a new study from Columbia University’s Mailman School of Public Health. The research shows that increased temperatures above 2°C, coupled with rising carbon dioxide (CO2) levels, lead to higher concentrations of inorganic arsenic in rice, potentially raising lifetime health risks for populations in Asia by 2050. The findings are published in The Lancet Planetary Health.
By measuring the effects of rising temperatures and CO2 on 28 rice strains over ten years in the field using FACE (Free-Air CO2 Enrichment) methodology, and combining advanced modeling techniques, the team estimated inorganic arsenic doses and health risks for seven Asian countries: Bangladesh, China, India, Indonesia, Myanmar, the Philippines, and Vietnam.
Health risks were calculated for cancer and non-cancer outcomes. Estimates of rice availability in 2021 by country, as reported in Food and Agriculture Organization of the United Nations (FAO) food balance sheets, were used as the starting point for estimating rice ingestion. The standard deviation of rice ingestion per kg bodyweight from the U.S. Environmental Protection Agency data was used to create a normal distribution for each country.
The study's projections for 2050 suggest a sharp rise in lifetime cancer cases, particularly lung and bladder cancers. China is projected to see the highest number of cases, with an estimated 13.4 million cancers linked to rice-based arsenic exposure.
Lewis Ziska, PhD, Columbia Mailman School associate professor of Environmental Health Sciences explained that the higher arsenic levels are likely due to climate-related changes in soil chemistry that favor arsenic that can more easily be absorbed into rice grain.
“From a health perspective, the toxicological effects of chronic iAs exposure are well established; and include cancers of the lung, bladder, and skin, as well as ischemic heart disease, Emerging evidence also suggests that arsenic exposure may be linked to diabetes, adverse pregnancy outcomes, neurodevelopmental issues, and immune system effects. In fact, “ingesting rice in regions like southern China and Southeast and South Asia is already a significant source of dietary arsenic and cancer risk,” said Ziska.
“Based on our findings, we believe there are several actions that could help reduce arsenic exposure in the future,” Ziska noted. “These include efforts in plant breeding to minimize arsenic uptake, improved soil management in rice paddies, and better processing practices. Such measures, along with public health initiatives focused on consumer education and exposure monitoring, could play a critical role in mitigating the health impacts of climate change on rice consumption.”
“Our study underscores the urgent need for action to reduce arsenic exposure in rice, especially as climate change continues to affect global food security,” says Ziska.
Reference: Impact of climate change on arsenic concentrations in paddy rice and the associated dietary health risks in Asia: an experimental and modelling study, Wang, Dongming et al. The Lancet Planetary Health, Volume 0, Issue 0
Speakers
Dr. Bhumika Maikhuri
BDS, MDS